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Abstract

The development of the similarity version of the heatfunctions for the laminar natural convection near a vertical
wall, isothermal or under constant heat ¯ux, is presented for the ®rst time in this work. From the beginning, the

similarity formulation of the problem is based on a given form for the streamfunction, the streamlines not being
usually presented. In this work, they are presented and analyzed. The paths followed by mass and heat are given by
the streamlines and heatlines, which give us well bordered and non-crossed corridors where mass and heat are

¯owing. When the heatfunction is properly made dimensionless, its dimensionless values are closely related with the
Nusselt number. In an attempt to present results that qualitatively apply over a wide range of Prandtl numbers, the
used similarity variables are somewhat di�erent from the ones usual in natural convection. 7 2000 Elsevier Science

Ltd. All rights reserved.

1. Introduction

The heatlines and masslines are the best way to visu-

alize the heat and mass transfer occurring in a two-

dimensional moving medium. The heatline concept was

®rst introduced by Kimura and Bejan [1] and Bejan

[2], and its mass counterpart, the massline concept, by

Trevisan and Bejan [3]. The use of such concepts for

visualization purposes is growing. The recent book by

Bejan [4] reviews the pre-1995 literature on the hea-

tlines and masslines, and uses widely such concepts to

aid the visualization of some physical situations. How-

ever, in spite of its usefulness, the heatlines and

masslines are not widely used by the numerical heat

transfer community. The recent work by Costa [5] is

an attempt to unify the streamline, heatline and mass-

line concepts, in such a way that they can be easily
introduced in the usual numerical heat transfer codes.

For a single component medium, the massfunction
refers to the global mass, being thus the streamfunc-
tion, and the masslines are the streamlines. The con-

stant values of the heatfunction and the
streamfunction, the heatlines and streamlines, represent
well bordered and non-crossed corridors, where heat

and mass are ¯owing, the ®rst due to the combined
e�ects of convection and di�usion, and the later due
to convection only (there is no di�usion in a single
component medium). In unsteady situations, the heat-

line and massline concepts could be also applied, thus
providing an instantaneous heat and mass ¯ow visual-
ization, as reported by Aggarwal and Manhapra [6].

When such tools are used to visualize the heat and
mass transfer occurring in boundary layers, we can
obtain a more complete picture of the involved trans-

port phenomena as well as the true conditions where
the boundary layer hypothesis are applied.
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The boundary layer problem can be solved by the

similarity method, the corresponding formulation
being considerably simpler than the one expressed by
the original partial di�erential equations. The heat-

function formulation can also be expressed in a simi-
larity version, which uses some features of the original
similarity problems' formulation. The heatfunction can

be obtained in this way in closed forms (analytical
forms), corresponding to di�erent wall heating/cooling
conditions. The situations of isothermal wall and con-
stant heat ¯ux at the wall (hot or cold wall) will be

considered in this work. However, the most expressive
form of the heatfunction is the one that takes as refer-
ence the lowest temperature value in the boundary

layer [4]. This aspect precludes the ®nding of the closed
form of the heatfunction corresponding to the constant
heat ¯ux cold wall situation. In order to obtain a for-

mulation and results that apply over a wide range of
Prandtl numbers, some of the used parameters and
variables are di�erent from the usual ones when ana-
lyzing the natural convection problem with the simi-

larity methods.
This work is the natural convection counterpart of

the one presented by Morega and Bejan [7] for forced

convection boundary layers, and by Morega and Bejan
[8] for forced convection boundary layers in ¯uid satu-
rated porous media.

2. Mathematical modeling

The natural convection near the y-oriented wall of

Fig. 1 is described by the mass conservation equation,

the x and y momentum equations joined together in
the y momentum boundary layer equation [4] and the
thermal energy conservation equation, which reads, re-

spectively,

Nomenclature

cp constant pressure speci®c heat
f auxiliary similarity ¯ow function
F auxiliary function for the heatfunction

g gravitational acceleration
gi (i = 1, 2) functions of the Prandtl number
Gr Grashof number

h convection heat transfer coe�cient
H heatfunction
k thermal conductivity

L a given level in the wall, LRY
Nu Nusselt number
Pr Prandtl number
_q 00 wall heat ¯ux
_Q heat ¯ow at the wall
Ra Rayleigh number
T temperature

u, v Cartesian velocity components
x, y Cartesian co-ordinates

Y highest level in the wall

Superscript

� modi®ed natural convection parameters

Subscripts

c lowest value of temperature
cond conduction
conv convection

L associated with length L
max maximum value
min minimum value
ref reference value

T referring to thermal e�ects
y referring to level y
0 at the wall

� dimensionless variable
1 at the ¯uid reservoir, away from the wall

Fig. 1. Geometry for the situations analyzed: (a) hot wall; and

(b) cold wall.
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This system of equations applies to the hot wall situ-
ation presented in Fig. 1a with the upper plus sign in

Eq. (2), and to the cold wall situation presented in
Fig. 1b with the lower minus sign in Eq. (2), a conven-
tion that will be used throughout this work.

It is assumed that the ¯uid is a constant property
medium, the only exception being the density present
in the buoyancy term, which has been made tempera-
ture dependent through the Boussinesq approach. The

pressure gradient term equals the hydrostatic pressure
gradient, the remaining buoyancy term being only
�2�gb�Tÿ T1�: The boundary conditions for Eq. (2)

are u � v � 0 at x � 0, and v40 as x4 �1: For the
thermal energy conservation equation (3), we always
have that T4T1 as x4 �1: The boundary con-

dition for Eq. (3) at x � 0 remains unspeci®ed in order
to consider further di�erent heating/cooling wall con-
ditions.

The heatfunction H is de®ned through its ®rst-order
derivatives as [5]

@H

@y
� rucp�Tÿ Tc � ÿ k

@T

@x
, �4a�

ÿ@H
@x
� rvcp�Tÿ Tc �, �4b�

where Tc is the lowest temperature in the boundary
layer. The term ÿk�@T =@y� is not present in Eq. (4b),
as the boundary layer approach neglects the longitudi-

nal y di�usion when compared with the longitudinal
convection. This does not represent any limitation
from the general heatfunction formulation [5], as the
term ÿk�@T=@y� can be considered and only taken as

zero at the end of the development.
Evaluating and making the crossed derivatives of the

heatfunction equal to 1 obtains the boundary layer

energy conservation equation (3) identically, assuming
implicitly that H is a C 2 continuous function. For the
streamfunction, there is no additional consideration

needed, as the similarity formulation of the problem
usually starts considering a given form of the stream-
function.

3. Natural convection near an isothermal wall

3.1. Formulation

The boundary condition for the energy equation (3)

at the wall is simply T�0, y� � T0: If T0 > T1, we have
the hot wall situation of Fig. 1a (plus sign in Eq. (2)),
and if T0 < T1, we have the cold wall situation of
Fig. 1b (minus sign in Eq. (2)).

The similarity formulation of the problem starts
with the dimensionless similarity variable

Z �
�
x

y

��
Gry
4

�1=4

� g1�Pr�, �5�

and the streamfunction

c � 4n
�
Gry
4

�1=4

f�Z� � g2�Pr�, �6�

where Gry � gbjT0 ÿ T1jy3=n 2 is the y-based Grashof

number and f �Z� is a dimensionless auxiliary function
of O�1�: It is usual to consider g1 = g2 = 1, essentially
following the work of Ostrach [9]. However, in order
to (qualitatively) enlarge the scope of the present

results for di�erent Prandtl number ¯uids, the g1�Pr�
and g2�Pr� functions are de®ned as

g1�Pr� �
�

4Pr 2

�4� Pr�
�1=4

�7a�

g2�Pr� �
� ���

2
p

2

�
Prÿ1g1�Pr�: �7b�

It should be noted that
�Gry=4�1=4 � g1 � �Ray Pr=�4� Pr��1=4, and that
4n�Gry=4�1=4 � g2 � 2

���
2
p

a�Ray Pr=�4� Pr��1=4, where

Ray � gbjT0 ÿ T1jy3=na is the y-based Rayleigh num-
ber. Each time we are searching for the solution for a
given Prandtl number, that is, in a particular calcu-

lation Pr is taken as a constant and f � f �Z�x, y�� only,
with f 0 � df=dZ: However, strictly speaking, Z �
Z�x, y, Pr�: Thus, for a given situation, the ¯uid ¯ow
solution is unique, and the c, n and u ®elds, and con-

sideration of di�erent forms of g1 and g2 leads to
di�erent values for the similarity function f.
The velocity components are evaluated as

u � @c
@y
�
�n
y

��
Gry
4

�1=4ÿ
3fÿ Z f 0

�� g2 �8a�

n � ÿ@c
@x
� ÿ4

�n
y

��
Gry

4

�1=2

f 0 � g1g2: �8b�

The temperature di�erence is made dimensionless as
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y
�
Z�x, y, Pr�� � T�x, y� ÿ T1

jT0 ÿ T1j , �9�

given that, in any case, y40 as Z4 �1: At Z � 0,
we have that y � 1 for the hot wall situation and y �
ÿ1 for the cold wall situation. The denominator of Eq.
(9) should be interpreted as jT0 ÿ T1j � Tmax ÿ Tmin:
The similarity version of the problem given by Eqs.

(1)±(3) becomes

y 00 � 3 Pr f y 0 � g2
g1

; y�0� � �2�1, y� �1� � 0, �10�

f 000 �
ÿ
3ff 00 ÿ 2f 0 2

�
� g2

g1
�2�y� 1

g31g2
;

f �0� � f 0�0� � 0, f 0� �1� � 0,

�11�

which is solved using the shooting method.
For the heatfunction formulation the y variable is

made dimensionless as y� � y=Y, Y being the maxi-
mum wall length considered, the variable x is made

dimensionless as x � � �x=Y ��GrY=4�1=4 � g1 and the
heatfunction is made dimensionless as H� �
H=�kjT0 ÿ T1j�: Recalling Eq. (5) one obtains Z�x �,
y���x�y�ÿ1=4:
Inserting the components of velocity given by Eqs.

(8a) and (8b) in Eqs. (4a) and (4b), and noting that

�Tÿ Tc� � jT0 ÿ T1jy for the hot wall situation, and
�Tÿ Tc� � jT0 ÿ T1j�yÿ y0� for the cold wall situ-
ation, one obtains

@H�
@y�
�
�
GrY
4

�1=4

yÿ1=4�

�
Pr g2

ÿ
3fÿ Z f 0

�
�
�
y
yÿ y0

�
ÿ g1y

0
�
, �12a�

ÿ @H
@x �
� ÿ

�
GrY
4

�1=4

y1=2� 4Pr g2f
0
�
y
yÿ y0

�
: �12b�

Assuming that H� is of the form

H��x �, y� � �
�
GrY
4

�1=4

ym� F
�
Z�x �, y� ��, �13�

and implicitly assuming that H��0, 0� � 0, one obtains
that

@H�
@y�
�
�
GrY
4

�1=4�
mymÿ1� Fÿ 1

4
ymÿ1� ZF 0

�
, �14a�

ÿ@H�
@x �
� ÿ

�
GrY
4

�1=4

ymÿ1=4� F 0: �14b�

From Eqs. (12b) and (14b) one obtains an expression

for F ', which enters in Eq. (14a) that, conjugated with
Eq. (12a), gives us the following expression for func-

tion F

F � 1

m
yÿm�3=4�

�
3 Pr g2 f

�
y
yÿ y0

�
ÿ g1y

0
�
: �15�

Function F is independent of y� if m � 3=4, and Eq.
(13) becomes

H��x�, y� � � 4

3

�
GrY
4

�1=4

y3=4�

�
3 Pr g2 f

�
y
yÿ y0

�

ÿ g1y 0
�
, �16�

which is the analytical expression for the dimensionless

heatfunction. The H��x�, y�� ®eld will be evaluated
only after the f, y and y 0 ®elds are known, obtained
after solving the system of equations (10) and (11).

3.2. Discussion

The local convection heat transfer coe�cient at a

given level y on the wall is obtained as

hy � �3�
�
k

y

��
Gry
4

�1=4

g1�y 0 �Z�0: �17�

The 0±L averaged convection heat transfer coe�cient
is obtained from Eq. (17) by integration, noting that
hyAyÿ1=4, to give

h0±L � �3�
�
4

3

��
k

L

��
GrL
4

�1=4

g1�y 0 �Z�0: �18�

The corresponding average Nusselt number,
Nu0ÿL � �h0ÿLL=k�, is obtained as

Nu0±L � �3�
�
4

3

��
GrL
4

�1=4

g1�y 0 �Z�0

� �3�
�
4

3

��
GrY
4

�1=4

L3=4
� g1�y 0 �Z�0: �19�

On the other hand, the dimensionless heatfunction on
the level L in the wall is obtained from Eq. (16) as

H��0, L� � � ÿ�4=3�
�
GrY
4

�1=4

L3=4
� g1�y 0 �Z�0, �20�

the same result obtained in Eq. (19) for the 0±L aver-
aged Nusselt number. It can be concluded that the
dimensionless heatfunction, evaluated along the wall,

gives us the average Nusselt number considered from
the origin (0, 0) to the considered location (0, L ) in
the wall.
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This is an expected result if we note that the heat
¯ow exchanged between the wall and the ¯uid is given

by

_Q0±L � �3��4=3�
�
GrY
4

�1=4

L3=4
� g1�y 0 �Z�0kjT0 ÿ T1j

� H�0, L�:

This is easily interpreted returning to the physical
meaning of the H�0, L� value [5]: it is the value of the

heat ¯owing, by unit length, L, between the points (0,
0) and (0, L ) in the wall.

3.3. Illustration

The dimensionless streamlines and heatlines for the
isothermal hot wall are presented in Fig. 2a and b, re-

Fig. 2. Dimensionless results for an isothermal hot wall, for a Pr � 0:73 ¯uid: (a) streamlines; and (b) heatlines.
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spectively, for a ¯uid medium with Pr � 0:73: The
streamfunction is made dimensionless as c� �
c=b4n�GrY4 �1=4c � y3=4� fg2: It was found from the simi-
larity results that �Z�dT

� 4:649, that is, x � � 4:649y1=4�
at the exterior edge of the velocity boundary layer, a

result also presented in Fig. 2a. At the exterior edge of
the thermal boundary layer, x � � 3:599y1=4� , a result
presented in Fig. 2b.

The ®rst conclusion extracted from Fig. 2a and b is
that mass and heat are ¯owing in counter-¯ow (in
direction x� within the boundary layer, with a resulting

upward motion of heat and mass. Another aspect is
that there is an intense motion at the lower exterior
edge of the velocity boundary layer, with the stream-
lines most dense for lower values of y�: The main vel-

ocity changes occur e�ectively within the velocity
boundary layer, as assumed by the boundary layer hy-
pothesis. However, the hot wall presence is felt at the

exterior edge of the velocity boundary layer in a con-
siderable strength, with the mass ¯owing into the
boundary layer.

As predicted by Eq. (17), hyAyÿ1=4, that is, the
intensity of the heat transfer from the wall to the ¯uid
is maximum for small y, and it decreases with yÿ1=4 as

y increases. This is shown in Fig. 2b, the heatlines at
the wall being most sparse for higher y values. It is
also found that the relevant heat transfer phenomena
occurs inside the thermal boundary layer, as assumed

by the boundary layer hypothesis.

From Eq. (19) and Fig. 2b it can be concluded that
the dimensionless heatfunction values at Z � 0, for a

given level L, can be interpreted as the average Nusselt
number over the 0±L length. Thus, for y� � 1 �y � Y),
one obtains H��0, 1� � Nu0±Y � 0:676:
For the isothermal cold wall situation, a ®gure for

the streamlines can be obtained from Fig. 2a by a ro-
tation of p around the x �-axis, in such a way that the

y� axis points downward.
The corresponding heatlines are presented in Fig. 3.

In this case, there is a parallel ¯ow of mass and heat

in the ÿx direction, thus giving rise to a very di�erent
picture of the heatlines. These are considerably dense
for lower y� at the exterior edge of the thermal bound-
ary layer. At Z � 0, the picture of the heatlines is the

same as when analyzing Fig. 2b, now with the y� axis
pointing downward. In this situation, there is an
intense mass ¯ow crossing the exterior edge of the vel-

ocity boundary layer, as for the hot wall situation, and
also an intense heat ¯ow (enthalpy ¯ow) entering the
thermal boundary layer through its exterior edge. In

this sense, the cold wall presence is considerably felt,
in both, the heat and ¯uid ¯ow sense, even outside the
thermal and velocity boundary layers, respectively. It

can be seen from Fig. 3 that most of the heat entering
the thermal boundary layer at a given level will reach
the wall at a considerably lower level. It can be con-
cluded from the streamline and heatline patterns that

if the ¯ow becomes turbulent for higher values of y�,
�y� � 1), this will a�ect the heat and ¯uid ¯ows at the
y� < 1 levels.

The presented results refer to a Pr � 0:73 ¯uid.
However, as we are using the adequate variables in the
similarity formulation, the qualitative behavior of the

heatlines remains essentially the same even for very
di�erent Prandtl number ¯uids. More signi®cant
changes are expected on the streamlines behavior when
changing the Prandtl number, essentially due to the

considerably di�erent picture of the velocity pro®les
for very di�erent Prandtl number ¯uids.

4. Natural convection near wall with constant surface

heat ¯ux

4.1. Formulation

In this case, the boundary condition for the energy
equation (3) at the wall is kj@T=@xjx�0 � _q 00 � constant

(>0). If �@T=@x�x�0 < 0 (hot wall), we have _q 00 �
ÿk�@T=@x�x�0, and _q 00 � k�@T=@x�x�0, otherwise. The
reference work for this problem is that of Sparrow and

Gregg [10].
The similarity formulation of the problem starts by

considering the dimensionless similarity variable

Fig. 3. Dimensionless heatlines for an isothermal cold wall,

for a Pr � 0:73 ¯uid.
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Z �
�
x

y

��Gr�y
5

�1=5

g1�Pr�, �21�

and the streamfunction

c � 5n
�
Gr�y
5

�1=5

f�Z� � g2�Pr�, �22�

where Gr�y � gb _q 00y4=�kn 2� is the modi®ed y-based

Grashof number and f �Z� is, once again, a dimension-
less auxiliary function of O (1). Analogously to what
was made for the isothermal wall situation, to qualitat-
ively enlarge the scope of the obtained results for

di�erent Prandtl number ¯uids, g1�Pr� and g2�Pr� func-
tions are de®ned as

g1�Pr� �
�

5 Pr 2

�7� Pr�
�1=5

�23a�

g2�Pr� �
� ��������������������������

15� 0:9� 7
p

15

�
Prÿ1g1�Pr�: �23b�

In this case, �Gr�y=5�1=5 � g1 � �Ra�yPr=�7� Pr��1=5, and
n �Gr�y5 �1=5 � g2 � �

��������������������������
15� 0:9� 7
p

=3�a �Ra �y Pr �7� Pr��1=5,
where Ra�y�gb _q 00y4=�kna� is the y-based modi®ed Ray-
leigh number.
Once again, each time we are searching for the sol-

ution for a given Prandtl number ¯uid, that is, in a
particular calculation Pr is taken as constant and f �
f �Z� only. Likewise, for a given situation the ¯uid ¯ow
solution is unique, and thus, the ®elds c, v and u, the

consideration of di�erent forms for g1 and g2 leading
to di�erent values for the similarity function f:
The velocity components are evaluated as

u � @c
@y
�
�n
y

��Gr�y
5

�1=5ÿ
4fÿ Zf 0

�� g2 �24a�

v � ÿ@c=@x � ÿ5�n=y�ÿGr�y=5� 2=5f 0 � g1g2: �24b�

In this case, the temperature is made dimensionless
as y�Z� � �T�x, y� ÿ T1�=DTy, with y40 as Z4 �1:
The temperature di�erence DTy �DTy > 0� is not con-
stant along the boundary layer height, being dependent
on y. Considering that _q 00 � �2�k�T�0, y� ÿ T1�=dT; y,
and that dT; y � y�Gr

�
y

5 �ÿ1=5�1=g1�, it can be stated that

DTy � � _q 00=k�y�Gr
�
y

5 �ÿ1=5�1=g1�: Thus, the dimensionless
temperature is expressed as

y
�
Z�x, y, Pr��
� �T�x, y� ÿ T1

�� k

_q 00

��
1

y

��
Gr�y
5

�1=5

g1, �25�

and, once the y ®eld is known, the generic temperature
di�erence �T�x, y� ÿ T1� can be obtained as

�
T�x, y� ÿ T1

� � y�Z�
�

_q 00y
k

��
Gr�y
5

�ÿ1=5�
1

g1

�
: �26�

The similarity version of the wall boundary condition

kj�@T=@x�x�0j � _q 00� _q 00 > 0� for the energy equation (3)
is expressed as �y 0 �Z�0 � �3�1:
The similarity version of the problem now becomes

y 00 � Pr
ÿ
4fy 0 ÿ f 0y

�� g2
g1

; y 0�0� � �3�1,

y� �1� � 0,

�27�

f 000 �
ÿ
4ff 00 ÿ 3f 0 2

�
� g2

g1
�2�y� 1

g41g2
;

f �0� � f 0�0� � 0, f 0� �1� � 0,

�28�

which is solved using once again the shooting method.
For the heatfunction formulation, the variable y is

made dimensionless as y� � y=Y, Y being once again

the maximum wall length considered, the variable x is

made dimensionless as x � � �x=Y ��Gr
�
Y

5 �1=5 � g1 and the
heatfunction is made dimensionless as H� � H=� _q 00Y �:
The variable Z is obtained to depend on x � and y� as
Z�x �, y���x �yÿ1=5� :
In this case, we have �Tÿ Tc� � DTyy for the hot

wall situation and that �Tÿ Tc��DTy�yÿ y0yÿ1=5� � for
the cold wall situation, as the minimum temperature
within the considered boundary layer is T�0, Y � in this

case. It is this additional dependence of the tempera-
ture di�erence �Tÿ Tc� on y� that precludes the use of
the same procedure for the hot and cold wall situ-
ations. The heatfunction for the cold wall situation

cannot be obtained in a closed analytical form, as is
the case for the hot wall situation, and it needs the use
of the general formulation presented by Costa [5].

For the hot wall situation, inserting the components
of velocity given by Eqs. (24a) and (24b) in Eqs. (4a)
and (4b), one obtains

@H�
@y�
� Pr

g2
g1

ÿ
4fÿ Z f 0

�
yÿ y 0, �29a�

ÿ@H�
@x �
� ÿ5 Pr

g2
g1

y4=5� y: �29b�

Similarly to what was made for the isothermal wall

situation, one obtains the analytical expression for the
heatfunction for the present situation as

H��x�, y� � � y�
�
4 Pr

g2
g1

fyÿ y 0
�
, �30�
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the ®eld H��x �, y�� being evaluated only after the ®elds
f,y and y 0 are known from the solution of Eqs. (27)

and (28).

4.2. Discussion

As the maximum temperature di�erence is not con-
stant along the co-ordinate y, the de®nition of any

average temperature di�erence leads to a well de®ned

average heat transfer coe�cient [11]. It should always
be veri®ed that h0ÿLjDT0±Lj � _q 00: In this work, use is

made of the fact that the surface heat ¯ux is constant,
essentially through the dimensionless heatfunction
used.

In the present case, the physical interpretation of the
heatfunction along the wall is easily obtained starting
from Eq. (4a) with �@H=@y�x�0 � ÿk�@T=@x�x�0: As
_q 00 � C te we have that _q 00 � �3�k�@T=@x�x�0, that is,

Fig. 4. Dimensionless results for a hot wall with constant surface heat ¯ux, for a Pr � 0:73 ¯uid: (a) streamlines; and (b) heatlines.
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�@T=@x�x�0��3�� _q 00=k�: One obtains that�
@H

@y

�
x�0
� �2� _q 00: �31�

Integrating this equation along the wall, making

H�0, 0� � 0, one obtains that�L
0

�
@H

@y

�
x�0

dy �
�L
0

�2� _q 00 dy�)H�0, L�

� �2� _q 00L, �32�

whose dimensionless version is

H��0, L� � � �3�L�, �33�
where L� � L=Y: This result is closely related with the

0±L average Nusselt number, interpreted in this case
as the ratio

Nu0±L �
ÿ

_Qconv

�
0±L=

ÿ
_Qcond

�
0ÿY�

ÿ
_q 00L

�
=
ÿ

_q 00Y
�

� L�: �34�

4.3. Illustration

The dimensionless streamlines and heatlines corre-
sponding to the hot wall situation, with a constant
heat ¯ux at the wall, for a Pr � 0:73 ¯uid, are pre-

sented in Fig. 4a and b, respectively. Now, the stream-
function is made dimensionless as c� �
c=�5n�Gr�Y5 �1=5� � y4=5� fg2: In this case, x � � 3:982y1=5� at

the exterior edge of the velocity boundary layer and
x � � 2:998y1=4� at the exterior edge of the thermal
boundary layer.

The main conclusions that can be extracted from
these ®gures are essentially the same as when analyzing
Fig. 2a and b, exceptions being the heatlines that are

equally spaced at the wall, and H��0, 1� � 1: Such
exceptions were naturally expected from the discussion
made in Section 4.2.

The picture of the streamlines for the cold wall situ-
ation can be obtained from Fig. 4a by a rotation of p
around the axis x �, in such a way that the axis y�
points downward. The heatlines are not presented

because, as referred above, they need to be obtained
following a di�erent procedure from the similarity-ana-
lytical one followed in this work.

5. Conclusions

The streamlines and heatlines are the most e�ective
ways to visualize the paths followed by mass and heat
¯owing in two-dimensional problems without source

terms in the energy equation. This is yet most relevant
for boundary layer situations that admit a similarity

formulation given that, in this case, an analytical (simi-
larity) expression can be obtained for the heatfunction
itself. This equally applies for forced or natural con-

vection boundary layers. Additionally, through the
streamlines and heatlines one can make a clearer criti-
cal analysis of the boundary layer hypothesis. How-

ever, it should be noted that we are evaluating the
reasonability of a model through the results obtained
with such a model. In this way, the obtained results

will contain, in some extension, the implications of the
model assumptions that we are evaluating.
The adequate explicit analytical similarity expression

for the heatfunction can be obtained for isothermal

hot or cold vertical walls, or for a hot vertical wall
with constant heat ¯ux at the surface. The heatfunc-
tion for the cold wall under the constant surface heat

¯ux cannot be obtained in a closed form, but it can be
obtained following the general heatfunction formu-
lation.

When properly made dimensionless, the values of
the heatfunction at the wall are closely related with the
average Nusselt numbers corresponding to the wall±

¯uid or ¯uid±wall heat transfer. Using the adequate
variables in the similarity formulation, the obtained
pictures are valid, on a qualitative sense, for a wide
range of Prandtl number ¯uids.
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